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A B S T R A C T

The connectivity of the more conductive hydrofacies strongly determines flow and transport in heterogeneous
media. Here we study solute transport in 3D binary isotropic samples with a proportion 𝑝 of a high hydraulic
conductivity facies (𝑘+), and (1 − 𝑝) of a low (𝑘−) one. The 𝑘+ facies is characterized by two connectivity
parameters: a connectivity structure type (no, low, intermediate and high), that controls how well the 𝑘+ facies
is connected, and an integral scale 𝐼𝑏, that controls the heterogeneity characteristic lengthscale. Under ergodic
conditions, and in the asymptotic Fickian regime that arises only very far from the injection plane, we analyze
two transport quantities: the normalized mean solute arrival time ⟨𝑡∗𝑎⟩, and the longitudinal dispersivity 𝛼𝐿. As
𝑝 reaches the percolation threshold 𝑝𝑐 (𝑝𝑐 depends on the connectivity parameters), 𝑘+ channels spanning the
sample along the mean flow direction appear, giving rise to fast flow pathways . A sharp decrease of ⟨𝑡∗𝑎⟩, and
a sharp increase of 𝛼𝐿, occur when 𝑝 → 𝑝𝑐 . As 𝑝 exceeds 𝑝𝑐 , a subsequent minimum of ⟨𝑡∗𝑎⟩ and a maximum
of 𝛼𝐿 are observed. This result is in contrast with previous ones by other authors that found a maximum of
𝛼𝐿 at 𝑝 = 𝑝𝑐 . On the other hand, 𝑝 kept fixed, 𝛼𝐿 decreases as the connectivity of the 𝑘+ facies increases. We
conclude that the connectivity features sampled by the solute particles during their trajectories are retained
in the transport quantities even after the asymptotic regime is attained. Also, that connectivity mainly affects
𝛼𝐿 through a shift or displacement of 𝑝𝑐 . Finally, the existence of a spatial connectivity structure may imply
early, but also late, arrival times, compared with the absence of structure.
1. Introduction

The study of the mechanisms involved in the transport of solutes
in heterogeneous porous media is central in a variety of scientific
and technological applications such as the groundwater and soil reme-
diation, underground hydrogen storage, geological radioactive waste
storage, geothermal energy production, mining and oil and gas recov-
ery (Bradley et al., 2023; Dentz et al., 2023; Lester et al., 2023; Kong
et al., 2023).

Our knowledge of the subsurface is intrinsically incomplete due to
the scarcity of field measurements. The related uncertainty is frequently
mitigated by the use of stochastic approaches, in which random space
functions (RSF) are constructed to describe the heterogeneity of a
medium, not as a single deterministic image, but as an ensamble of
images (Dagan, 1989). Among the RSF, Multi-Gaussian fields (Freeze,
1975; Gelhar, 1986; de Dreuzy et al., 2007) are the most widely
studied. In these, the point values of hydraulic conductivity 𝑘(�̄�) are
the result of a random process with a unimodal Gaussian probability

∗ Corresponding author at: Grupo de Medios Porosos, Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, Buenos Aires, Argentina.
E-mail address: abosch@fi.uba.ar (A. Boschan).

density function 𝑃 (ln(𝑘(�̄�))), with mean ⟨ln(𝑘(�̄�))⟩, and variance 𝜎2ln(𝑘(�̄�)),
while the spatial correlation of 𝑘(�̄�) is defined by a covariance func-
tion 𝜌(𝑘(�̄�)) with a certain integral length scale 𝐼 . Typically, 0 <
𝜎2ln(𝑘(�̄�)) < 0.5 represents a mild degree of heterogeneity, while 2 <
𝜎2ln(𝑘(�̄�)) < 9 a high one. However, for media composed of regions or
domains with components of highly differing flow properties, the Multi-
Gaussian representation might be inaccurate (Rubin, 1995; Huang and
Dai, 2008). For example, alluvial fan systems (Fleckenstein and Fogg,
2008), or fluvio-glacial deposits (De Caro et al., 2020) may present a
structure of interconnected geobodies (e.g. sandy/gravel lenses with a
clay/sandstone matrix) (Fogg, 1986; Journel and Alabert, 1989; Guin
and Ritzi, 2008), that are far from unimodal, and require a more
realistic representation in terms of multiple hydrofacies. In all cases,
the connectivity of the more conductive components strongly impacts
flow and transport in a way that is not always captured by 𝑃 (𝑘(�̄�)) and
𝜌(𝑘(�̄�)) (Poeter and Townsend, 1994; Zappa et al., 2006). The spatial
variability of the flow velocity fields over scales from the pore scale
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Nomenclature

List of acronyms

HCS High connectivity structure
LCS Low connectivity structure
NS No structure
NST Normal score transform
BTC Breakthrough curve
RSF Random space function

List of symbols

𝛥 Grid cell linear size
𝑘(�̄�) Point values of hydraulic conductivity
𝑘𝑖(�̄�) Intermediate indicator
𝑘+, 𝑘− Characteristic conductivity of the facies
𝐾𝑒𝑞 Equivalent hydraulic conductivity
𝜌(�̄�) Covariance function
𝐿𝑥, 𝐿𝑦, 𝐿𝑧 Sample linear size
𝐼 Underlying integral scale (multigausssian

samples)
𝐼𝑏 Binary media integral scale
⟨ln(𝑘(�̄�))⟩ Mean of the hydraulic conductivity distribu-

tion
𝑝 Proportion of a high conductivity facies
𝑝𝑐 Percolation threshold of the high conductiv-

ity facies
𝛥ℎ∕𝐿𝑥 Hydraulic head gradient
𝑈𝑥 Mean flow velocity
𝑢𝑥, 𝑢𝑦, 𝑢𝑧 Components of the flow velocity field
𝐷𝑚 Solute molecular diffusion coefficient
𝑡𝑎 Arrival time of the solute particles
𝑡∗𝑎 Dimensionless arrival time
𝛼𝐿 Longitudinal solute dispersivity
𝑃 (𝑘(�̄�)) Hydraulic conductivity probability density

function
𝜎ln 𝑘(�̄�) Variance of the natural logarithm of the

hydraulic conductivity distribution
𝛥𝑥2 Second moment of the solute particle spatial

distribution
𝑡 Time
𝜏𝐷 Characteristic diffusion time
𝜏𝐴 Characteristic advection time

to the aquifer scale gives rise to several mechanisms of dispersion of a
solute. Moreover, tortuous fast flow pathways (channeling) can lead to
significant variations of first arrival times and spreading of a contam-
inant (Western et al., 2001; Knudby et al., 2006; Bianchi and Zheng,
2016; Molinari et al., 2019). In this regard, a binary representation,
obtained through the regrouping of multiple hydrofacies into two main
ones, is an appropriate frameset to study the behavior of flow and
transport at the onset of channeling: it makes it possible to retain the
geometrical complexity of the fast flow pathways, and to use the point
of view of percolation theory to analyze them, while it maintains the
parameter space tractable.

1.1. Connectivity and flow

Mean flow parameters, such as the equivalent conductivity 𝐾𝑒𝑞 ,
2

are highly dependent on the connectivity of the high 𝑘(�̄�) classes, t
facies or components. In the following, we use the term ‘‘ classes’’ for
continuous 𝑘(�̄�) distributions (e.g. Multigaussian), ‘‘facies’’ for discrete
ones (e.g. binary), and ‘‘components’’ in general. Several works revised
connectivity metrics and their use to predict these parameters (Knudby
et al., 2006; Renard and Allard, 2013), finding strong correlations
between some of these metrics and 𝐾𝑒𝑞 . For multigaussian media, the
intermediate 𝑘(�̄�) classes form a connected network, while the high and
low 𝑘(�̄�) classes form isolated blobs. In order to take into account a
wider range of connectivity scenarios, (Zinn and Harvey, 2003) applied
a normal score transform (NST) to multigaussian media, performing
this way a spatial swap, after which it is the high 𝑘(�̄�) classes that form
a connected network (or isolated blobs). Otherwise said, after the NST,
high 𝑘(�̄�) classes will have an increased or reduced connectivity (here
alled high or low connectivity structure), thus representing extreme
ases of connectivity for an isotropic 𝑘(�̄�) field, 𝑃 (ln(𝑘(�̄�))), ⟨ln(𝑘(�̄�))⟩,
2
ln(𝑘(�̄�)) and 𝜌(𝑘(�̄�)) kept fixed. The NST is a simple transformation that
aintains the gaussianity of 𝑃 (𝑘(�̄�)) and the shape of 𝜌(𝑘(�̄�)) (while
changes). Zinn and Harvey used these media to study 𝐾𝑒𝑞 in 2D,

inding, for the high and the low connectivity structures respectively,
reater and smaller 𝐾𝑒𝑞 than for the original multigaussian media.
ater, Jankovic et al. (2016), analyzed the 𝐾𝑒𝑞 of such structures in
D, finding a much smaller contrast of 𝐾𝑒𝑞 , between the high and low
onnectivity structures, than in 2D.

Colecchio et al. (2021) followed a similar approach on binary media
ith a 𝑘+ and a 𝑘− facies, using 2D and 3D samples for which the 𝑘+

acies could have no, low, intermediate or high connectivity structure.
he authors found that any influence of connectivity on 𝐾𝑒𝑞 could
e well accounted for simply by a shift in the percolation threshold
𝑐 of the 𝑘+ facies. Previously, the connectivity of 2D binary media
ade of inclusions was studied by Knudby et al. (2006) by using

n empirical formula to estimate 𝐾𝑒𝑞 , while McKenna et al. (2011)
nalyzed 𝐾𝑒𝑞 for 2D truncated multigaussian fields with a distance-
ased upscaling procedure, finding a strong dependence of 𝐾𝑒𝑞 on the
ercolation threshold 𝑝𝑐 if the 𝑘+∕𝑘− contrast is high. So did (Boschan
nd Noetinger, 2012) in 3D. Oriani and Renard (2014) used image
nalysis over binary samples to evaluate a new connectivity metric, the
olidity indicator, that was found to be very well correlated to 𝐾𝑒𝑞 in
D.

.2. Connectivity and transport

Connectivity also controls the parameters and regimes of the trans-
ort of a passive solute, as high 𝑘(�̄�) channels or low 𝑘(�̄�) barriers make
or the interplay between fast flow pathways and slow retention zones,
hat drive the arrival times and spreading of the solute (Edery et al.,
014). This is why identifying the relationship among connectivity
nd transport quantities such as mean arrival times and dispersivity
s crucial for uncertainty management and risk assessment (Tyukhova
t al., 2015; Rizzo and de Barros, 2017, 2019). However, deriving these
uantities directly from properties of heterogeneous media still remains
major challenge (Bradley et al., 2023; Cirpka et al., 2022; Dentz et al.,
023; Talon et al., 2023). For weakly heterogeneous media, a First
rder Approximation predicts that longitudinal dispersivity 𝛼𝐿 attains
n asymptotic value given by 𝛼𝐿 = 𝐼𝜎2ln(𝑘(�̄�)) (Fiori et al., 2017).

Here 𝛼𝐿 = 𝐷𝐿∕𝑈𝑥, where 𝐷𝐿 is the longitudinal dispersion co-
fficient and 𝑈𝑥 the mean flow velocity. As heterogeneity increases,
he asymptotic regime is more rarely attained, and anomalous (Non-
ickian) transport starts to prevail. Indeed, this kind of behavior was
eported to occur in very simple types of media, such as layered
nes (Matheron and De Marsily, 1980) (for parallel flow). Anomalous
ransport has been extensively described from the theoretical and nu-
erical point of view, (Berkowitz and Scher, 1995, 1997), for field
ata (Sidle et al., 1998; Gouze et al., 2008; Ben-Noah et al., 2023;
ianchi et al., 2023) and laboratory experiments (Moroni et al., 2007;
yukhova and Willmann, 2016). For media with large variances, strong

ailing, driven by advection through low conductivity regions, was
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observed (as later Willmann et al. (2008) and Srzic et al. (2013) did).
Moreover, anomalous transport in highly heterogeneous media is fre-
quently explained by incomplete mixing (Le Borgne et al., 2011). How-
ever, for very far monitoring distances, when the solute particles have
sampled thoroughly the heterogeneity characteristic features (Zarlenga
and Fiori, 2015), transport evolves slowly from anomalous to normal,
the asymptotic Fickian regime is achieved (Jankovic et al., 2006; Fiori
et al., 2017), and dispersivity parameters can be well-characterized (de
Dreuzy et al., 2007; Beaudoin and de Dreuzy, 2013).

Zinn and Harvey (2003) also analyzed the behavior of 𝐷𝐿 in their
work, finding that it was respectively greater and smaller for the high
and low connectivity structures than for multigaussian media. Indeed,
they evaluated that, in their ‘‘connected’’ media, 𝐷𝐿 behaved as in
the layered media of Matheron and De Marsily (1980), for parallel
flow, despite the fact that the two types of media are topologically
very different. In contrast with their 2D results, the 3D simulations
performed by Jankovic et al. (2016) yielded breakthrough curves (BTC)
that were ‘‘practically independent’’ of the (connectivity) structure,
which is a remarkable result, in the light of other studies that showed
that the fastest pathways, i.e the ‘‘least resistance path’’ (Tyukhova
et al., 2015; Rizzo and de Barros, 2017, 2019), are strongly correlated
to the first arrival time of the solute.

A considerable branch of studies on transport have been carried out
in the framework of percolation theory, which provides quantitative
measures of connectivity (Renard and Allard, 2013). Dispersion 𝐷𝐿
follows a percolation power law scaling (Sahimi, 1987; Koplik et al.,
1988), that depends on whether the ‘‘dead ends’’ of the flow backbone
significantly contribute to dispersion or not. Later, it was shown that
these scaling laws are appropriate for anomalous transport (Sahimi,
2012). Finally, Rivard and Delay (2004) studied the behavior of the
longitudinal dispersion coefficient 𝐷𝐿, in 2D percolative networks with

proportion 𝑝 of conductive bonds. They observed that 𝐷𝐿 increased
sharply with the proportion 𝑝, and then decreased, with a maximum at
𝑝 ≈ 𝑝𝑐 .

1.3. Objectives

The present article conveys some of the issues addressed in a
previous article (Colecchio et al., 2021), that studied the influence of
connectivity and percolation on flow parameters, to the more com-
plex domain of solute transport. Considering highly heterogeneous 3D
media: is there any remaining influence of the connectivity features
sampled by the solute particles during their trajectories on the transport
quantities once the asymptotic regime is attained ? How does the onset
and completion of percolation affect mean arrival times and dispersiv-
ity in this situation? In that regard, by following a stochastic approach,
we have performed simulations of advective–diffusive transport on
very long and heterogeneous random binary samples, analyzing, under
ergodic conditions, the spatial statistics of the solute particle cloud
in the asymptotic regime that arises only very far from the injection
plane. Connectivity was modified explicitly by varying the connectivity
structure type and the integral scale 𝐼𝑏 (these are the connectivity
parameters that control the spatial organization of the 𝑘+ component
or facies), but also varies implicitly with its proportion 𝑝. Spatially
uncorrelated media samples were used as a reference of the absence
of connectivity structure. Due to the non-trivial extrapolation from 2D
studies to 3D realistic cases (Jankovic et al., 2016; Zarlenga et al., 2018;
Colecchio et al., 2021), particularly regarding percolative properties
that strongly depend on dimensionality, we have chosen to work in 3D,
despite the high CPU cost.

The paper is structured as follows: In Section 2 we present the
numerical methodology, including the generation of media samples,
the identification of the percolation threshold of the 𝑘+ facies, and the
computation of flow and transport quantities. The results are presented
in Section 3, where flow parameters are first addressed, to then focus
3

on the arrival times and dispersivity of the solute, as a function of the
connectivity parameters. As we deal with highly heterogeneous media
samples, the achievement of an asymptotic regime requires detailed
assessment, and is therefore deferred to Appendix A. In Section 4, we
discuss our results in a percolation framework, outline the conclusions
and examine perspectives for future work.

2. Materials and methods

The procedure consisted of:

• Generation of binary media samples characterized by three pa-
rameters: a proportion 𝑝 of the 𝑘+ facies (0 < 𝑝 < 1), an integral
scale 𝐼𝑏 (yielding its ‘‘grain size’’), and a connectivity structure
type (no, low, intermediate, high), that controls how well the 𝑘+

facies is connected. Determination of the percolation threshold 𝑝𝑐
of the 𝑘+ facies (the value of 𝑝 for which a cluster of 𝑘+ cells spans
the sample along the mean flow direction).

• Computation of the flow velocity field and simulation of solute
transport.

hese are developed below in detail:

.1. Generation of binary media samples with different connectivity struc-
ure types

The binary media samples are constructed in three steps, as follows:

1. Generation of multigaussian media samples of dimensions 𝐿𝑥 =
2048𝛥,𝐿𝑦 = 𝐿𝑧 = 256𝛥 (the linear size of a cell is 𝛥 = 1 m),
using a spectral method through the code FFTW (Gutjahr, 1989;
Frigo and Johnson, 2005). Here 𝑥 is the mean flow direction
while 𝑦 and 𝑧 are orthogonal to it. We use a standard normal
distribution of an intermediate indicator 𝑘𝑖(�̄�), with isotropic
gaussian covariance function (Beaudoin and de Dreuzy, 2013).
Due to the very elevated CPU cost associated with the employed
media sizes, only two realizations were generated for verification
purposes, with good agreement among them.

2. Modification of the connectivity of the multigaussian samples by
using a normal score transform (NST) (Zinn and Harvey, 2003)
to swap the intermediate 𝑘𝑖(�̄�) classes with the high (or low)
ones. This is performed in four cases depending on the input
underlying integral scale 𝐼 :

(a) 𝐼 ≪ 𝛥 (hereafter named 𝐼𝑛𝑠, the spatially uncorrelated
case used as a reference),

(b) 𝐼 > 𝛥, without applying the NST,
(c) 𝐼 > 𝛥, applying the NST.
(d) 𝐼 > 𝛥, applying the NST, and then multiplying the indica-

tor value 𝑘𝑖(�̄�) by −1 (i.e. reflecting the indicator values
around the mean of their gaussian distribution). For cases
𝑏 − 𝑐 − 𝑑 the studied values of the integral scale 𝐼 were
1𝛥, 1.5𝛥 and 2𝛥 (these are defined after performing the
NST, using the gaussian covariance function. We chose
these values from a trade-off between the linear size of
the grid cell 𝛥 and the length of the samples 𝐿𝑥: On the
one hand, as the input parameter 𝐼 becomes significantly
smaller than 𝛥, it is the latter that controls the actual
length-scale of heterogeneity (otherwise said, it does not
make sense to study values of 𝐼 significantly smaller than
𝛥), while, on the other hand, for values of 𝐼 significantly
greater than 2𝛥, it was verified that the asymptotic regime
was not achieved even at 𝑥 = 𝐿𝑥. As they are at this
stage, the samples will be referred to as underlying media

samples.
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3. Binarization by standard truncation using a single threshold (Al-
lard, 1993), whose value is determined by the target proportion
𝑝 of 𝑘+ cells in the binary sample. This procedure maps the 𝑘𝑖(�̄�)
point values (from step 2)) onto 𝑘+ = 100 m/day (for the high
conductivity facies, in short, the 𝑘+ facies, composed of 𝑘+ cells),
or 𝑘− = 0.01 m/day (for the low conductivity facies, in short,
the 𝑘− facies). Each binary sample has then a proportion 𝑝 of 𝑘+
cells and a proportion 1 − 𝑝 of 𝑘− cells. To enhance our percola-
tive approach, and mimic realistic heterogeneity contrasts, the
ratio 𝑘+∕𝑘− was maximized within the possibilities of our CPU
resources. The employed contrast of 𝑘+∕𝑘− = 104 (fixed in this
work) is representative of real subsurface systems such as sand-
clay ones (Bernabé et al., 2004). The resulting binary samples
have one of the following connectivity structures (see 2)):

(1) No structure.
(2) Intermediate (a truncated gaussian).
(3) Low (𝑘+ cells are preferentially attributed to the un-

derlying disconnected matrix, i.e., they tend to form 𝑘+

isolated blobs embedded in a 𝑘− matrix).
(4) High (𝑘+ cells are preferentially attributed to the un-

derlying connected matrix, i.e., they tend to form a 𝑘+

connected network that embeds 𝑘− isolated blobs). Note
that cases 𝑏 − 𝑐 − 𝑑 converge to case 𝑎 if 𝐼 = 𝐼𝑛𝑠 (the
heterogeneity ‘‘texture’’ becomes uncorrelated noise as 𝐼
becomes smaller than 𝛥). The latter is used as a refer-
ence to compare with media samples having the same
proportion 𝑝 but lacking any connectivity structure.

ross sections of the samples obtained with the above procedure are
hown in Fig. 1. Binarization maintains the gaussian covariance but
odifies the integral scale from 𝐼 (as of step b) onto 𝐼𝑏 (the integral

cale of the binary samples), depending on the value of 𝑝.
We stress on the following: even when the underlying integral

cale 𝐼 is the parameter initially used to control the heterogeneity
engthscale of the media samples during their generation (steps 1–2),
he binarization procedure that follows (step 3) transforms the integral
cale from 𝐼 to 𝐼𝑏, and then, it is indeed the binary integral scale 𝐼𝑏 the
ne that captures the lengthscale the binary samples actually used in
he transport simulations.

Note that the outlet face is typically 𝐿𝑥∕𝐼 ≈ 𝐿𝑥∕𝐼𝑏 ≈ 2000 integral
cales away from the injection plane (this distance is key to attain the
symptotic regime). This method of generating the binary samples is
nalogous, yet slightly different, to that reported in Colecchio et al.
2021).

For the high connectivity structure type, 𝑘+ cells tend to form a
onnected network, while 𝑘− cells tend to form isolated blobs. The
pposite occurs for the low connectivity structure type, while the
ntermediate connectivity structure is simply a truncated gaussian.

The percolation threshold 𝑝𝑐 is the lower value of 𝑝 for which a
luster of 𝑘+ cells (i.e. a 𝑘+ cluster) spans the sample in the mean
low direction. This spanning cluster is composed by the backbone,
here flow takes place, and by dead ends. The values of 𝑝𝑐 were

alculated (for each 𝐼 and connectivity structure type) using the cluster
dentification function from the code CONNECT3D (Pardo-Igúzquiza
nd Dowd, 2003), and are shown in Fig. 2 as a function of the integral
cale of the binary media 𝐼𝑏. Face connectivity between cells was
onsidered. The monotonic decrease of 𝑝𝑐 with 𝐼𝑏 in 3D has already
een reported in the literature ((Harter, 2005), Fig. 9 in Colecchio et al.
2021)). Further technical details on the determination of 𝑝𝑐 can be
ound in Colecchio et al. (2021).

.2. Computation of the flow velocity field and transport quantities

In this study, flow is considered incompressible and non-
eformable, then governed by the mass conservation equation coupled
4

ith Darcy’s law, yielding 𝛥𝐾𝛥ℎ = 0. An hydraulic head gradient
ℎ∕𝐿𝑥 is applied between the inlet and the outlet faces of sample
situated at 𝑥 = 0 and 𝑥 = 𝐿𝑥 respectively), which are orthogonal to

the mean flow direction (𝑥 axis), while periodic boundary conditions
are applied on the long lateral faces (Dartois et al., 2018; Beaudoin
et al., 2019). The steady-state flow velocity field 𝑢(𝑥, 𝑦, 𝑧) is solved by
sing a finite-volume scheme with a uniform regular grid (Chavent
nd Roberts, 1991), and with harmonic intercell transmissivities (Ey-
ard et al., 2007). With these boundary conditions, ⟨𝑢𝑦(𝑥, 𝑦, 𝑧)⟩𝑥,𝑦,𝑧 =

⟨𝑢𝑧(𝑥, 𝑦, 𝑧)⟩𝑥,𝑦,𝑧 = 0, while 𝑈𝑥 = ⟨𝑢𝑥(𝑥, 𝑦, 𝑧)⟩𝑥,𝑦,𝑧 is the mean flow veloc-
ty. The equivalent conductivity 𝐾𝑒𝑞 of the sample may be obtained as:

𝑒𝑞 =
𝐿𝑥𝑈𝑥
𝛥ℎ

(1)

Advection and diffusion of the solute particles are respectively
simulated using a first order explicit scheme and a random-walk
method, (Rivard and Delay, 2004; Ramirez et al., 2008), the trajectory
of the particles being established by a particle-tracking algorithm. A
pulse of 𝑁𝑝 = 5000 particles is injected at 𝑡 = 0 on a plane of size
0.8𝐿𝑦 × 0.8𝐿𝑧, situated perpendicular to the mean flow direction, and
10 𝐼 downstream from the inlet face, to avoid border effects (Beaudoin
t al., 2019). We use flux proportional particle injection rate (Jankovic
t al., 2016) (see Fig. 3).

For clarity, we explain here the computation of the solute mean
rrival times and dispersivity, while the assessment of an asymptotic
ickian regime, achieved very far from the injection plane, is deferred
o Appendix A. The mean arrival time to the outlet plane is given by
q. (2) (𝑖 labels the particles), which in the Fickian regime coincides
ith 𝑡𝑎50% the time required for 50% of the particles to reach that
lane. We also record 𝑡𝑎1%, the time for which 1% of the particles have
eached the outlet plane, which is frequently used as a measure of the
rrival time of the leading solute plume, and therefore of transport
onnectivity (Renard and Allard, 2013).

𝑡𝑎⟩ =
∑𝑁𝑝

𝑖=1 𝑡
𝑖
𝑎

𝑁𝑝
(2)

On the other hand, the longitudinal dispersivity 𝛼𝐿 = 𝐷𝐿∕𝑈𝑥
is estimated from the time derivative of the second order moment
of the particle spatial distribution and from the mean flow velocity
𝑈𝑥 (Beaudoin and de Dreuzy, 2013).

Table 1 shows the parameters employed in the simulations.

3. Results

3.1. Mean flow velocities

Fig. 4 shows the variation of the mean flow velocity 𝑈𝑥 =
⟨𝑢𝑥(𝑥, 𝑦, 𝑧)⟩𝑥,𝑦,𝑧, and of 𝐾𝑒𝑞 (right vertical axis, 𝐾𝑒𝑞 ∝ 𝑈𝑥) with the
proportion 𝑝, for all the studied connectivity parameters. The crosses
mark the percolation thresholds 𝑝𝑐 from Fig. 2.

For a given value of 𝐼 , the flow velocities of the high connectivity
structure are slightly greater than those of the intermediate one. The
no and low connectivity structures may be up to an order of magnitude
smaller than the former ones, and show an interesting crossover at 𝑝 ≈
0.4(> 𝑝𝑐 ), for all values of 𝐼 . This may be due to the fact that, for the low
connectivity structure, isolated 𝑘+ blobs become narrowly connected
when 𝑝 → 𝑝𝑐 , giving rise to a backbone with fast flow pathways of very
variable cross section (see Fig. 5 f). The characteristic S-shape of the
percolation transition (a sharp increase when 𝑝 approaches 𝑝𝑐 , smeared-
out by finite size effects and by the finite 𝑘+∕𝑘− contrast) is observed.
Aiming to focus on transport more than on flow in this article, we refer
to Masihi et al. (2016), and to Colecchio et al. (2021), for detailed
discussions on finite size and finite conductivity contrast effects, and
on how the variation of 𝐾𝑒𝑞 (and then of 𝑈𝑥) with 𝑝 is affected by the
connectivity parameters.
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Fig. 1. Cross sections (𝑦 − 𝑧 plane, mean flow is in 𝑥−direction) of the 3D binary samples (𝐿𝑥 = 2048𝛥,𝐿𝑦 = 𝐿𝑧 = 256𝛥) for 𝑝 = 0.5. From top to bottom: 𝐼 = 𝐼𝑛𝑠; 1𝛥; 1.5𝛥 and 2𝛥.
From left to right: high, intermediate and low connectivity structures (■ ∶ 𝑘+ = 102 m/day, □ ∶ 𝑘− = 10−2 m/day). Note that as 𝐼 → 𝐼𝑛𝑠 (i.e. upwards), all connectivity structures
converge to the spatially uncorrelated case.
Table 1
Main simulation parameters and units.
Description Symbol Representative value(s) Units

Grid cell linear size 𝛥 1 m
Sample linear size 𝐿𝑥 , 𝐿𝑦 , 𝐿𝑧 2048 (𝑥); 256 (𝑦, 𝑧) m
Underlying integral scale (as of 2.1) 𝐼 𝐼𝑛𝑠 , 1𝛥, 1.5𝛥; 2𝛥 m
Characteristic conductivity of the facies 𝑘+(𝑘−) 100, (0.01) m/day
𝑘+ facies proportion 𝑝 [0, 0.1 … 0.9, ] –
Connectivity structure type – No, low, intermediate, high
Solute molecular diffusion coefficient 𝐷𝑚 0.01 m2/day
Hydraulic head gradient 𝛥ℎ∕𝐿𝑥 0.01 m/m
3.2. Solute particle distribution: Arrival times ⟨𝑡𝑎⟩, ⟨𝑡∗𝑎⟩

Fig. 6 shows the mean arrival time of the solute particles ⟨𝑡𝑎⟩ as a
function of the proportion 𝑝 for 𝐼 = 1.5𝛥. It decreases monotonically
as 𝑈𝑥 increases, but more rapidly for the high and intermediate con-
nectivity structures, which behave similarly. The crossover for 𝑝 ≈ 0.4,
between the no and low connectivity structure, reflects that of Fig. 5.

The crosses indicate the percolation thresholds 𝑝 = 𝑝𝑐 from Fig. 2.
The results shown in Fig. 4 reflect those in Fig. 5, greater mean flow
velocities U implying smaller arrival times ⟨𝑡𝑎⟩. To assess the explicit ef-
fect of the connectivity structure on ⟨𝑡𝑎⟩ we show in Fig. 7 the variation
of a dimensionless arrival time ⟨𝑡∗⟩ = ⟨𝑡𝑎⟩ with 𝑝 (here the subscript
5

𝑎
⟨𝑡𝑎⟩𝑛𝑠
‘‘ns’’ stands for ‘‘no structure’’): this representation makes it possible to
decouple the influence on ⟨𝑡𝑎⟩ of the variation of connectivity due to
a variation of 𝑝 from that due to a change in the spatial organization
of the 𝑘+ facies. In that figure, ⟨𝑡∗𝑎⟩ has a minimum for 𝑝 somewhat
greater than 𝑝𝑐 , its value being almost two orders of magnitude smaller
than unity for the high and intermediate connectivity structures. On the
other hand, for the low connectivity structure, a minimum also appears
just after 𝑝𝑐 , but then, ⟨𝑡∗𝑎⟩ increases beyond unity. This shows how the
consolidation of flow pathways for 𝑝 > 𝑝𝑐 may imply a strong decrease
(what one may expect if channeling exists) but also relative increase of
⟨𝑡∗𝑎⟩, depending on the connectivity structure. We remark a feature that
will reappear in the following: in all cases, the minimum of ⟨𝑡∗𝑎⟩ occurs
for 𝑝 somewhat greater than 𝑝 .
𝑐
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Fig. 2. Percolation thresholds 𝑝𝑐 as a function of the binary integral scale 𝐼𝑏 for
the high ( ), intermediate ( ) and low ( ) connectivity structure types. ( ): no
structure (spatially uncorrelated, 𝐼 = 𝐼𝑛𝑠). The limiting value of 𝑝𝑐 = 0.311 corresponds
to site percolation in a cubic regular grid (Stauffer and Aharony, 1994). For each
curve, the 1st to 4th datapoints from left to right correspond to 𝐼 = 𝐼𝑛𝑠; 1𝛥; 1.5𝛥 and
2𝛥 respectively. The dotted lines are guides to the eye.

Fig. 3. Scheme (perspective view) of the computational domain and flow conditions
employed in this work to study the transport of a solute. The 3D media sample shown
has a high connectivity structure with 𝑝 = 0.4 and 𝐼 = 1.5𝛥. (■ ∶ 𝑘+ = 102 m/day,
□ ∶ 𝑘− = 10−2 m/day). An hydraulic head gradient 𝛥ℎ is applied between the inlet
and the outlet faces of the sample (situated at 𝑥 = 0 and 𝑥 = 𝐿𝑥), while periodic
boundary conditions are applied on the lateral faces of the sample. The solute particles
are injected on a plane of size 0.8𝐿𝑦 × 0.8𝐿𝑧 situated at 10 𝐼 downstream from the
inlet face.

3.3. Solute particle distribution: Longitudinal dispersivity 𝛼𝐿

Very long media samples were used so that an asymptotic Fickian
regime could be attained far from the injection plane, despite the high
degree of heterogeneity of the studied samples : This is assessed in
detail in the A, where we also show that the longitudinal solute dis-
persivity 𝛼𝐿 is well-defined in the asymptotic regime. In the following,
we only address this regime. The dispersivity 𝛼𝐿 is shown in Fig. 8, as
a function of 𝑝.

The mechanism of dispersion results from molecular diffusion, and
from the spatial variability of the flow velocity field occurring at all
scales (pore to formation) (Frippiat and Holeyman, 2008; Gelhar et al.,
6

Fig. 4. Mean flow velocity 𝑈𝑥 = ⟨𝑢𝑥(𝑥, 𝑦, 𝑧)⟩𝑥,𝑦,𝑧 (left vertical axis) and equivalent
conductivity 𝐾𝑒𝑞 (right vertical axis) as a function of 𝑝 for the high ( ), intermediate ( )
and low ( ) connectivity structure types. ( ): no structure (spatially uncorrelated,
𝐼 = 𝐼𝑛𝑠); ( ): 𝐼 = 1𝛥; ( ): 𝐼 = 1.5𝛥; and ( ): 𝐼 = 2𝛥. The crosses indicate
the percolation threshold 𝑝𝑐 from Fig. 2.

1992). In the case of 3D binary media considered here, if 𝑝 approaches
the extreme values 0 or 1, these 3D binary media become homogeneous
media, respectively with 𝐾𝑒𝑞 = 𝐾− or 𝐾+. Thus the spatial variations
of the flow velocity field vanish, and dispersivity 𝛼𝐿 is only driven by
molecular diffusion. In between, the inhomogeneities of the flow field
give rise to mechanical dispersion. Notably, for all the combinations
of connectivity parameters studied, the rate of increase of 𝛼𝐿 with 𝑝 is
maximal at 𝑝 = 𝑝𝑐 (note that 𝑝𝑐 varies with the connectivity structure
type and with 𝐼 , as shown in Fig. 2), while 𝛼𝐿 itself shows a maximum
for 𝑝 slightly greater than 𝑝𝑐 (reflecting the minima of Fig. 7). Also,
the peak value of 𝛼𝐿 for the low connectivity structure type nearly
duplicates that for the high one (and it is an order of magnitude greater
than that of the no structure case). These results are discussed in detail
in the next section.

4. Discussion and conclusions

We provide here, for clarity, our interpretation of how flow and
transport evolve as 𝑝 increases, in particular, as the percolation tran-
sition occurs. Fig. 5 shows a conceptual scheme of this transition.

1. For 𝑝 ≈ 0, 𝑘(�̄�) = 𝑘−∀�̄�, 𝐾𝑒𝑞 = 𝑘−, the flow velocity field is
homogeneous, and the dispersivity of the solute is only driven
by molecular diffusion.

2. For 0 < 𝑝 < 0.15 < 𝑝𝑐 , 𝑈𝑥 (and then 𝐾𝑒𝑞) slowly increases with
𝑝, the local flow velocities show mild spatial fluctuations, the
variance of solute particle velocities also slowly increases with 𝑝
(Fig. 5 𝑎, 𝑐, 𝑒)

3. Eventually, as 𝑝 reaches 𝑝𝑐 , a spanning cluster of 𝑘+ cells ap-
pears, connecting the inlet and outlet faces of the sample. This
cluster is composed by a backbone (at this point made of very
narrow channels), where significant flow takes place, and by
dead ends with no flow. A small fraction of the solute particles
now suddenly sample very high flow velocities within the fast
flow pathways of the backbone, 𝑈𝑥 shows a sharp increase and
then ⟨𝑡𝑎⟩ a sharp decrease. On the other hand, a large fraction of
particles sample low flow velocities outside the backbone. This
implies an important increase of the variance of solute particle
velocities, and then of dispersivity, which is observed in Fig. 8.

4. As 𝑝 departs from 𝑝𝑐 , the volume fraction of the backbone (now
made of broader consolidated channels) increases, the minima
of ⟨𝑡𝑎⟩ in Fig. 7 and the maxima of 𝛼𝐿 in Fig. 8 take place. Now
a moderate fraction of solute particles sample high velocities
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Fig. 5. Conceptual scheme of the onset of percolation in the high (𝑎, 𝑏), no (𝑐, 𝑑) and low (𝑒, 𝑓 ) connectivity structures (■ ∶ 𝑘+; □ ∶ 𝑘−), for the range 0.15 < 𝑝 < 0.3 at which
percolation occurs in 3D (see. Fig. 2). For the high one (𝑎, 𝑏), a connected network of 𝑘+ cells consolidates as 𝑝 exceeds 𝑝𝑐 (𝑎 → 𝑏), making for fast flow pathways within the
backbone. Note that these have a rather homogeneous cross section (𝑏). For the low one, isolated 𝑘+ blobs get connected as 𝑝 → 𝑝𝑐 (𝑒 → 𝑓 ). Because 𝑝𝑐 is much higher in 2D than
in 3D (Stauffer and Aharony, 1994), the spanning cluster is not visible in 𝑓 ), so it is represented by joining the 𝑘+ blobs by narrow links. In 𝑐 − 𝑑, the no structure case is shown
as a reference.
Fig. 6. Mean arrival time of the solute particles as a function of 𝑝 for the high ( ),
intermediate ( ) and low ( ) connectivity structure types and 𝐼 = 1.5𝛥. ( ): the
no structure case (spatially uncorrelated, 𝐼 = 𝐼𝑛𝑠). The crosses indicate the percolation
thresholds 𝑝 = 𝑝𝑐 from Fig. 2. The high and intermediate connectivity structures behave
similarly, while the no and low connectivity structure types show relatively much
greater values of ⟨𝑡𝑎⟩, while the crossover of Fig. 4 can be observed. Inset shows
𝑡𝑎50%−𝑡𝑎1%

𝑡𝑎50%
, a measure of the width of the distribution of 𝑡𝑎 relative to ⟨𝑡𝑎⟩.
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Fig. 7. Normalized mean arrival times ⟨𝑡∗𝑎⟩ = ⟨𝑡𝑎⟩∕⟨𝑡𝑎⟩𝑛𝑠 as a function of 𝑝, for the
high ( ), intermediate ( ) and low ( ) connectivity structure types and 𝐼 = 1.5𝛥. An
inverted peak (a minimum) exists for 0.2 < 𝑝 < 0.3. The crosses indicate the percolation
threshold 𝑝 = 𝑝𝑐 , while the dotted line indicates unity.
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Fig. 8. Dispersivity 𝛼𝐿 as a function of the proportion 𝑝 for the high ( ), intermediate
( ) and low ( ) connectivity structure types. ( ): the no structure case (spatially
uncorrelated, 𝐼 = 𝐼𝑛𝑠), ( ): 𝐼 = 1𝛥, ( ): 𝐼 = 1.5𝛥 and ( ): 𝐼 = 2𝛥. Crosses
indicate 𝑝 = 𝑝𝑐 , where, notably, the maximum rate of increase of 𝛼𝐿 with 𝑝 takes place,
preceding its peak. In all cases, 𝛼𝐿 increases with 𝐼 for fixed connectivity structure and
𝑝.

within the fast flow pathways of the backbone. For the low
connectivity structure, the backbone is composed of 𝑘+ blobs
connected by narrow 𝑘+ links (Fig. 5 𝑓 ), giving rise to flow
pathways of very variable cross section, and possibly to solute
retention or trapping. On the other hand, for the high connectiv-
ity structure (Fig. 5 𝑏), a connected network fast flow pathways,
of rather uniform cross section, becomes consolidated.

5. Finally, as 𝑝 approaches unity, 𝑘(�̄�) → 𝑘+∀�̄� (𝐾𝑒𝑞 = 𝑘+), the
flow spatial inhomogeneities disappear, the variance of particle
velocities vanishes, and the dispersivity of the solute is driven
again only by molecular diffusion, in symmetry with (𝑎).

The occurrence of 𝐷𝐿 maximum for 𝑝 ∼ 𝑝𝑐 has already been
reported in 2D percolation networks by Rivard and Delay (2004). In
Fig. 6 from that work, it can be clearly observed that this maximum
occurs for 𝑝 > 𝑝𝑐 . As the authors state, at 𝑝 = 𝑝𝑐 very few solute particles
can only sample the high velocities within the narrow and tortuous
backbone, and they do so for very short time lapses (arrival times are
comparable to those for 𝑝 < 𝑝𝑐). It is required that 𝑝 exceeds 𝑝𝑐 so that
broader 𝑘+ channels, and then broader fast flow pathways, consolidate
(Fig. 5 𝑏, 𝑑, 𝑓 ), and so that a significant fraction of particles can sample
velocities within them, with the consequent increase of particle velocity
variances and then of 𝛼𝐿.

One may wonder if the passage from the steep increase of 𝛼𝐿 at
𝑝 = 𝑝𝑐 to the subsequent maximum for 𝑝 > 𝑝𝑐 , observed in Fig. 8,
occurs in a similar manner for the different connectivity parameters.
Also, in the same figure, it is observed that, 𝐼 kept fixed, the low
connectivity structure is the most dispersive one, and that the peak
value of 𝛼𝐿 for that structure nearly duplicates that of the high one
(with the intermediate in between).

To clarify both issues, we show in Fig. 9 the normalized dispersivity
𝛼𝐿∕𝐼𝑏 as a function of 𝑝 − 𝑝𝑐 , where 𝐼𝑏 is the binary integral scale
shown in Fig. 2. The horizontal collapse is rather satisfactory, showing
more clearly that the onset of percolation systematically triggers a steep
increase and a subsequent maximum of 𝛼𝐿, and the peaks for all the
combinations of connectivity parameters take place in the short range
0 < 𝑝 − 𝑝𝑐 < 0.1. This suggests that the influence of the connectivity
parameters on these features of the 𝛼𝐿 dependence on 𝑝 is exerted
mainly through a shift in the percolation threshold 𝑝𝑐 , with some
analogy with a result obtained by Colecchio et al. (2021) for 𝐾𝑒𝑞 .

Also, vertically wise, in this representation the ratio of two between
maxima is reduced from 2 to 1.4, implying that 𝐼𝑏 controls in some
measure the magnitude of 𝛼 , but an explicit dependence on the
8

𝐿

Fig. 9. Data collapse: Dispersivity 𝛼𝐿 normalized by the binary integral scale 𝐼𝑏 as a
function of 𝑝− 𝑝𝑐 for the high ( ), intermediate ( ) and low ( ) connectivity structure
types. ( ): 𝐼 = 1𝛥, ( ): 𝐼 = 1.5𝛥 and ( ): 𝐼 = 2𝛥.

connectivity structure type exists beyond the influence of 𝐼𝑏. Probably,
the use of 𝐼𝑏 to scale 𝛼𝐿 could be greatly improved by the use of a
non-cartesian length metrics such as the ones described in Renard and
Allard (2013). We have tested some, such as the percolation correlation
length 𝜉 and the connectivity function 𝜏(�̄�), without any clear findings.
Notably, the high connectivity structure remains the least dispersive
even when the effect of its smaller 𝐼𝑏 has been corrected.

In that regard, Fiori et al. (2010) studied transport continuous media
for which the integral scale 𝐼 was not constant, but defined as a
function of ln(𝑘(�̄�)). These authors found a decrease of the asymptotic
dispersivity when the high 𝑘(�̄�) values were more spatially correlated,
due to solute trapping in the low 𝑘(�̄�) zones, which is in agreement
with our results. On the other hand, Zarlenga and Fiori (2015) found
an increase of dispersion when the high 𝑘(�̄�) values formed a connected
matrix in bimodal media, as the low 𝑘(�̄�) non-overlapping inclusions
retained the solute particles. This is somehow in contrast with our
results, for which the high connectivity structure is the least disper-
sive. We recall that previous authors reported a clear dependence of
the solute BTC’s on the connectivity structure type in 2D lognormal
fields (Zinn and Harvey, 2003), but, in 3D, simulations of showed
BTC curves that were ‘‘practically independent’’ of the connectivity
structure, even when a wide variety of them were considered (Jankovic
et al., 2016). Our results show that this independence does not hold for
highly heterogeneous binary media. On the contrary, we observe that
transport quantities still retain the signature of the connectivity features
sampled by the solute particles during their trajectories even after the
Fickian regime is attained. Even though the connectivity structures
addressed in this work span, to some extent and within the studied
range of parameters, the best (high connectivity structure) and worst
(low connectivity structure)-case scenarios of connectivity, we recall
that the studied media samples constitute a very simplistic view of
natural geological media, which typically show much more complex
heterogeneity and connectivity features. Determining connectivity in
real sites requires extensive characterization through a wide variety of
methods, which often need to take into account higher order statistics.
This characterization is a difficult task due to few available data. Also,
in this work we only consider transport under ergodic conditions, while
non-ergodic conditions may be found in many applications. In that case,
a proper uncertainty analysis would be required to determine the trans-
port quantities. Finally, we understand that further research should be
also conducted to characterize thoroughly the very interesting region
between the occurrence of percolation (𝑝 = 𝑝𝑐) and peak of dispersivity
that follows as 𝑝 increases. This region could be studied in more detail
by analyzing the probability density function of particle velocities.
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Fig. A.1. The second moment of the normalized solute particle spatial distribution 𝛥𝑥2∕𝐿2
𝑥 as a function of the dimensionless time 𝑡 𝑈𝑥∕𝐿𝑥, for the high connectivity structure

and for: (×) 𝑝 = 0.1, (★) 𝑝 = 0.3 and (+) 𝑝 = 0.5. Left: Early times, for which the solute particle cloud is near the injection plane. Right: Late times, for which the cloud is far from
he injection plane, but all particles are still within the sample. The solid line is a linear fit. Note that 𝑈𝑥 is a function of 𝑝 (see Fig. 4).
Fig. A.2. The second moment of the normalized solute particle spatial distribution 𝛥𝑥2∕𝐿2
𝑥 as a function of the dimensionless time 𝑡 𝑈𝑥∕𝐿𝑥, for the low connectivity structure and

for: (×) 𝑝 = 0.1, (★) 𝑝 = 0.3 and (+) 𝑝 = 0.5. Left: Early times, for which the solute particle cloud is near the injection plane. Right: Late times, for which the cloud is far from the
injection plane, but all particles are still within the sample. The solid line is a linear fit.
Fig. A.3. Dispersivity 𝛼𝐿 as a function of the dimensionless time 𝑡 𝑈𝑥∕𝐿𝑥 for the high (left) and low (right) connectivity structure types. For both 𝐼 = 1.5𝛥 and (×) 𝑝 = 0.1, (★)
𝑝 = 0.3 and (+) 𝑝 = 0.5.
𝑖
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Appendix A. Achievement of the asymptotic Fickian regime

Here the achievement of an asymptotic Fickian regime very far
from the injection plane is assessed. We recall that this regime can
only be obtained in our simulations due to the use of very long media
samples, i.e, using monitoring positions situated at 𝑥∕𝐼 ≈ 𝑥∕𝐼𝑏 ≈ 2000
(i.e. 2000 integral scales away from the injection plane), while previous
works typically reported much closer monitoring distances (e.g. 63
integral scales away (Jankovic et al., 2016). Fig. A.1 shows the early
(left) and late (right) dependence of the second moment of the solute
particle spatial distribution 𝛥𝑥2 = ⟨𝑥2𝑖 (𝑡)⟩ − ⟨𝑥𝑖(𝑡)⟩2⟩, (here the index

labels the particles) normalized by the squared sample length 𝐿2
𝑥,

ith the dimensionless time 𝑡𝑈𝑥∕𝐿𝑥, for 𝑝 = 0.1; 0.3; 0.5 (i.e. taking
nto account both sides of the percolation transition), for 𝐼 = 1.5𝛥,
nd for the high connectivity structure. Fig. A.2 shows the same, but
or the low connectivity structure. For both, at early times, the non-
inear variation implies a non-Fickian regime, while, for late times, the
inear variation implies a diffusive Fickian one, with a well-defined
ongitudinal dispersivity. The linear regressions yield 𝑅2 > 0.99 for all

late time behaviors. Note that 𝑈𝑥 is a function of 𝑝 (see Fig. 4).
The characteristic diffusion time is 𝜏𝐷 ≈ 𝐼2𝑏 ∕𝐷𝑚 ≈ 100 days. If we

equire it to be 10 times smaller than the characteristic advective time
≈ 𝐿 ∕𝑈 , then, considering 𝑈 = 1 m∕s as an upper bound, the
𝐴 𝑥 𝑥 𝑥
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Fig. A.3 shows how 𝛼𝐿 attains its asymptotic value very far from the
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